Empirical Bayes for DCM: A Group Inversion Scheme
نویسندگان
چکیده
This technical note considers a simple but important methodological issue in estimating effective connectivity; namely, how do we integrate measurements from multiple subjects to infer functional brain architectures that are conserved over subjects. We offer a solution to this problem that rests on a generalization of random effects analyses to Bayesian inference about nonlinear models of electrophysiological time-series data. Specifically, we present an empirical Bayesian scheme for group or hierarchical models, in the setting of dynamic causal modeling (DCM). Recent developments in approximate Bayesian inference for hierarchical models enable the efficient estimation of group effects in DCM studies of multiple trials, sessions, or subjects. This approach estimates second (e.g., between-subject) level parameters based on posterior estimates from the first (e.g., within-subject) level. Here, we use empirical priors from the second level to iteratively optimize posterior densities over parameters at the first level. The motivation for this iterative application is to finesse the local minima problem inherent in the (first level) inversion of nonlinear and ill-posed models. Effectively, the empirical priors shrink the first level parameter estimates toward the global maximum, to provide more robust and efficient estimates of within (and between-subject) effects. This paper describes the inversion scheme using a worked example based upon simulated electrophysiological responses. In a subsequent paper, we will assess its robustness and reproducibility using an empirical example.
منابع مشابه
Empirical Bayes for Group (DCM) Studies: A Reproducibility Study
This technical note addresses some key reproducibility issues in the dynamic causal modelling of group studies of event related potentials. Specifically, we address the reproducibility of Bayesian model comparison (and inferences about model parameters) from three important perspectives namely: (i) reproducibility with independent data (obtained by averaging over odd and even trials); (ii) repr...
متن کاملBayesian model reduction and empirical Bayes for group (DCM) studies
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes)...
متن کاملInvariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family
Based on a given Bayesian model of multivariate normal with known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e. conditional and unconditional empirical Bayes confidence interval), the empiri...
متن کاملGeneralised filtering and stochastic DCM for fMRI
This paper is about the fitting or inversion of dynamic causal models (DCMs) of fMRI time series. It tries to establish the validity of stochastic DCMs that accommodate random fluctuations in hidden neuronal and physiological states. We compare and contrast deterministic and stochastic DCMs, which do and do not ignore random fluctuations or noise on hidden states. We then compare stochastic DCM...
متن کاملInversion of hierarchical Bayesian models using Gaussian processes
Over the past decade, computational approaches to neuroimaging have increasingly made use of hierarchical Bayesian models (HBMs), either for inferring on physiological mechanisms underlying fMRI data (e.g., dynamic causal modelling, DCM) or for deriving computational trajectories (from behavioural data) which serve as regressors in general linear models. However, an unresolved problem is that s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015